PreCalculus	Formulas 🎽	22.3	
Sequences and Series:	(6)		Complex and Polars:
$\frac{\text{Binomial Theorem}}{(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k}$	$\frac{\text{Arithmetic Last Term}}{a_n = a_1 + (n-1)d}$	$\frac{\text{Geometric Last Term}}{a_n = a_1 r^{n-1}}$	$\frac{\text{DeMoivre's Theorem:}}{[r(\cos\theta + i\sin\theta)]^n} = r^n(\cos n \cdot \theta + i\sin n \cdot \theta)$ $r = \sqrt{a^2 + b^2} \qquad x = r\cos\theta \qquad [a + bi]$
$ \frac{\frac{\text{Find the } r^{\text{th}} \text{ term}}{\binom{n}{r-1}}a^{n-(r-1)}b^{r-1} $	<u>Arithmetic Partial Sum</u> $S_n = n \left(\frac{a_1 + a_n}{2}\right)$	$\frac{\text{Geometric Partial Sum}}{S_n = a_1 \left(\frac{1 - r^n}{1 - r}\right)}$	$\begin{vmatrix} r = \sqrt{a^2 + b^2} & x = r \cos \theta \\ \theta = \arctan \frac{b}{a} & y = r \sin \theta \\ (r, \theta) \rightarrow (x, y) & i^2 = -1 \end{vmatrix}$
Functions:	1		_ Determinants:
To find the <u>inverse function</u> : 1. Set function = y 2. Interchange the variables 3. Solve for y <u>Algebra of functions:</u> $(f + g)$ $(f \cdot g)(x) = f(x) \cdot g(x);$ (f / g) <u>Domains:</u> $D(f(x)) \cap D(g(x))$ <u>Domain</u> (usable x's) Watch for problems with zero denominators and with negatives under radicals.	$f(x) = f(x) + g(x); (f - g)(x) = f(x) / g(x), g(x) \neq 0$	Asymptotes: (horizontal) 1. $f(x) = \frac{x+3}{x^2-2}$	$\begin{vmatrix} 3 & 5 \\ 4 & 3 \end{vmatrix} = 3 \cdot 3 - 5 \cdot 4$ Use your calculator for 3x3 determinants. $\frac{\text{Cramer's Rule:}}{ax + by = c}$ $\frac{1}{ a \ b } \begin{pmatrix} c \ b & a \ c \\ f \ e & d \ f \end{pmatrix}$ Also apply Cramer's rule to 3 equations with 3 unknowns
Range (y's used)Difference Quotient $\frac{f(x+h) - f(x)}{h}$ terms not containing a mult.of h will be eliminated.	$f(x) = \frac{x}{x^2 + x - 6}$ Vertical asymptotes at x = -3 and $x = 2$	top power < bottom power means y = 0 (z-axis) 2. $f(x) = \frac{4x^2 - 5}{3x^2 + 4x + 6}$ top power = bottom power means y = 4/3 (coefficients) 3. $f(x) = \frac{x^3}{x+4}$ None! top power > bottom power	Trig: Reference Triangles: 30

Analytic Geometry:									Induction:	
$\frac{\text{Circle}}{(x-h)^2 + (y-k)^2} = r^2$ Remember "completing the square" process for all conics.		$\frac{\text{Ellipse}}{\left(x-h\right)^2} + \frac{\left(y-k\right)^2}{b^2} = 1$ larger denominator \rightarrow major axis and smaller denominator \rightarrow minor axis		Latus rectum lengths from focus are b ² /a		$\frac{\text{Eccentricity:}}{e = 0 \text{ circle}}$ $0 < e < 1 \text{ ellipse}$ $e = 1 \text{ parabola}$ $e > 1 \text{ hyperbola}$		Find P(1): Assume P(k) is true: Show P(k+1) is true:		
Parabola $(x-h)^{2} = 4a(y-k)$ $(y-k)^{2} = 4a(x-h)$ Polynomials:	= 4a(x-h) rectum length from focus = 2a		$\frac{\frac{\text{Hyperbola}}{(x-h)^2}}{a^2} - \frac{(y-k)^2}{b^2} = 1$ Latus length from focus b ² /a		a→transverse axis b→conjugate axis c→focus where c is the hypotenuse. asymptotes needed		у	Rate of Growth/Decay: $y = y_0 e^{kt}$ y = end result, y_0 = start amount, Be sure to find the value of k first.		
Remainder Theorem:Substitute into the expression to find the remainder. $[(x + 3)$ substitutes -3]	Synthetic Division <u>Mantra:</u> "Bring down, multiply and add, multiply and add" [when dividing by (x - 5), use +5 for synthetic division]		Depress equation $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (also use calculator to examine roots)		fa	Far-left/Far-right Behavior of a PolynomialThe leading term $(a_n x^n)$ of the polynomial determines thefar-left/far-right behavior of the graph according to thefollowing chart. ("Parity" of $n \rightarrow$ whether n is odd or even.)LEFT-HAND BEHAVIOR $a_n x^n$ LEFT-HAND BEHAVIOR n is even n is odd				
Descartes' Rule of Signs1. Maximum possible # of positive roots \rightarrow number of sign changes in $f(x)$ 2. Maximum possible # of negative roots \rightarrow number of sign changes in $f(-x)$	Analysis of Roots P N C Chart * all rows add to the degree * complex roots come in conjugate pairs * product of roots - sign of constant (same if degree even, opposite if degree odd) * decrease P or N entries by 2		<u>Upper bounds</u> : All values in chart are + <u>Lower bounds</u> : Values alternate signs <u>No remainder</u> : Root <u>Sum of roots</u> is the coefficient of second term with sign changed. <u>Product of roots</u> is the constant term (sign changed if odd degree, unchanged if even degree).			HAND BEHAVIOR or Leading Coefficient Test	$a_{n} > 0$ $a_{n} < 0$	(same as right)	(opposite right) negative $x < 0$ positive $x > 0$ positive $x < 0$ negative $x < 0$ negative $x > 0$	